Economic Analysis of Peer Support Programs

Peer support (PS) has been shown to play an influential role in health and health care delivery. As used here, "peer support" is not defined by who provides it, but rather by the functions and principles that comprise it (1). Although, for convenience, "peer supporters" are referenced in this paper, most PS is provided by people with other names, including community health workers, lay health advisors, and peer navigators among others. By providing individuals with information, helping individuals address complex emotional and behavioral issues, delivering instrumental support (e.g., navigation of health care systems, transportation to and from doctors’ appointments), and providing ongoing care, peer supporters have assisted individuals with diverse health needs and served in a variety of capacities and settings (2-4). While the feasibility, reach, sustainability, and effectiveness of peer support have all been demonstrated, more research on the cost effectiveness of PS is needed. This executive summary reports on:

- What we know about the economic value of peer support
- Making the business case for peer support: focusing on the most vulnerable and hardly reached
- The organization of other sections in this report

What we know about the economic value of peer support

Overall, 31 studies examined economic aspects of peer support programs and reported favorable results. These studies occurred in a number of settings, including the United States (n=20), other upper income settings (n=5), and low / middle income settings (n=6) and were organized around a number of health conditions, including but not limited to: diabetes, asthma, cancer, cardiovascular disease, postpartum depression, quality of life, and malnutrition. These studies largely demonstrated the robust and consistent economic value of peer support programs. Almost all studies were found to be below commonly used benchmarks associated with cost effectiveness (i.e., less than $50,000 per quality adjusted life (QALY) year gained) or cost effective for high priority sub-populations or health outcomes. In addition, two studies reported favorable return on investments for peer support programs.

Making the business case for peer support: focusing on the most vulnerable and hardly reached

A number of studies found peer support to be more cost effective for sub-groups that were more vulnerable and/or hardly reached. For instance, four US studies reported that results were even more cost effective (i.e., less costly and more effective) for individuals at high risk, such as individuals with high glycemic levels, individuals with impaired fasting glucose, and individuals without insurance. Moreover, peer support programs in low / middle income countries were substantially more cost effective than those in upper income countries. For instance, the three studies examined the cost utility of peer support programs in South Africa and Bangladesh found peer support programs to be extremely cost effective, with cost per DALY averted or QALY gained ranging from $26 to 1862.

Organization of subsequent sections in this report:

In the sections that follow, more detailed information is provided on:

- Types of economic analysis
- Special considerations in economic analysis
- Synthesis of studies demonstrating the economic value of peer support
- Detailed tables demonstrated the economic value of peer support, organized by setting (Table 1: US studies; Table 2: Other upper income settings, Table 3: low / middle income settings)
- Appendix with additional information on methods used to identify studies
Types of Economic Analysis

Cost effectiveness analysis: Cost effectiveness analysis compares the cost of interventions to their effectiveness (5). Results are expressed as cost per health outcome (e.g., cost per case averted). Cost effectiveness analysis can help determine the best value of interventions by finding out which one produces the most health benefit for its cost.

Cost utility analysis: Cost utility analysis is used to compare interventions with different health outcomes (5). Results are usually expressed in cost per quality-adjusted life year (QALY) gained or disability-adjusted life year (DALY) averted and calculated as: $ Net Costs / $ Net Effects = $ / QALY gained or DALY averted.

Return on investment: Return on investment (ROI) is used to show the direct financial return resulting from an investment, from the perspective of the investor (5). For example, if an intervention cost $200 and resulted in a $300 gain, then there would be an addition 50% return on the $200 investment. To calculate the return on investment, one can use this formula: $ Gained - $ Cost of Investment / ($ Cost of investment). This type of analysis typically takes into account only the perspective of the entity directly paying for the intervention and relies only on short-term returns.

Other economic analysis: Other economic analyses may be used to help estimate the costs or benefits of certain interventions or intervention strategies (5).

Special Considerations in Economic Analysis

Control group: A special statistic used in cost effectiveness analysis is the incremental cost-effectiveness ratio (ICER) which is defined as the difference in cost between two possible interventions (usually intervention and control), divided by the difference in their effect. Because the ICER is often used in cost effectiveness research, it is important to understand the control group in these studies.

Perspective: Perspective refers to the point of view one takes when conducting an economic analysis. Specifying a perspective is necessary because it determines which costs and outcomes are likely to be taken into consideration. It also helps how results should be interpreted. Some different perspectives are shown in the table below.

<table>
<thead>
<tr>
<th>Cost</th>
<th>Perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Societal</td>
</tr>
<tr>
<td>Direct medical (e.g., clinical services, hospitalization, medications)</td>
<td>Yes</td>
</tr>
<tr>
<td>Direct non-medical (e.g., transportation or child care expenses incurred because of an illness)</td>
<td>Yes</td>
</tr>
<tr>
<td>Indirect (e.g., time lost from work)</td>
<td>Yes</td>
</tr>
<tr>
<td>Intangible (e.g., pain, suffering; represent a cost to patients and society in terms of quality of life)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Synthesis of Findings on the Economic Value of Peer Support Interventions

US studies (Table 1)

Study characteristics: Overall, 20 studies were conducted in the US. These studies were set in a variety of different locations (e.g., Arkansas, rural Vermont, Texas along the US-Mexico border) and focused on different health conditions, including but not limited to diabetes, asthma, cancer, and cardiovascular disease.

Cost effectiveness: Four studies examined cost effectiveness and of these studies, most were cost effective (6–9). For example, in one study of lay health educator support for diabetes prevention among older adults, the cost per pound lost was $20 (7). In another study where nurse practitioners and community health workers provided support for adults with cardiovascular risk factors, the cost per a one unit reduction in systolic blood pressure was $101 (e.g., 120 mmHg to 119 mmHg) (6).

ROI: The two studies that looked at ROI also found favorable results (ROIs of 1.90 and 2.28), which means for every dollar spent, the interventions saved approximately 2 dollars in health care costs (10, 11).

Cost utility analysis: Moreover, nine out of ten studies that conducted cost utility analysis (12-21) found peer support interventions to be under the $50,000 per QALY benchmark often used as a benchmark for “cost effective” (22). Costs per QALY ranged from $355 to $143,000, depending on the perspective. In addition, several studies indicated that results were even more favorable for individuals at high risk (e.g., individuals with high glycemic levels, or individuals without insurance) (12, 14, 15).

Other economic analysis: Four studies examined other economic aspects of peer support interventions, including the cost and/or cost savings (23-26).

Other upper income studies (Table 2)

Study characteristics: Overall, five studies were conducted in other upper income settings, including the UK, Canada, the Netherlands, and Austria. These studies evaluated diverse outcomes, including postpartum depression, quality of life and hope among mental health patients, and diabetes.

Cost effectiveness: Three studies found peer support to be cost effective (costing as little as £43 per month of postnatal depression avoided or $10,009 per case of postpartum depression averted) (27-29).

Cost utility analysis: The one study that conducted a cost utility analysis found that the intervention cost £67,184 per QALY gained. However, it was more cost effective for high risk individuals, in this case individuals with impaired fasting glucose, where it cost 20,620 per QALY gained (30).

Other economic analysis: One study examined other economic aspects of peer support interventions, including the yearly savings of a group based diabetes support program (31).

Low and middle income studies (Table 3)

Study characteristics: Overall, six studies were conducted in low / middle income settings, including South Africa, Bangladesh, Mozambique and focused on hypertension, diabetes, malnutrition, and cardiovascular disease.

Cost utility analysis: The three studies that focused on cost utility analysis were very cost effective (ranging from $26 per DALY averted to $1862 per QALY gained) (32-34).

Other economic analysis: Three additional studies examined other economic aspects of peer support interventions, including the costs and cost savings of different peer support intervention strategies (35-37).
Table 1. US Studies

<table>
<thead>
<tr>
<th>Type of economic analysis</th>
<th>Author, year, and reference</th>
<th>Intervention and setting</th>
<th>Control group description</th>
<th>Economic indicator(s)</th>
<th>Perspective</th>
</tr>
</thead>
</table>
| Cost effectiveness analysis | Allen et al. 2014 (6) | Nurse practitioner and CHW support for adults with cardiovascular risk factors
Set in federally qualified health care centers in metropolitan centers | Enhanced usual care | $101 per one unit reduction in systolic blood pressure (e.g., 120 mmHg to 119 mmHg)
$209 per one unit reduction in diastolic blood pressure (e.g., from 80 mmHg to 79 mmHg)
$1255 for one unit reduction in A1c (e.g., from 8% to 7%) | Health services |
| | Krukowski et al. 2013 (7) | Lay health educator support for diabetes prevention among older adults
Set in senior centers in Arkansas | Memory improvement | $20 per pound lost (e.g., 150 lb to 149 lb) | Not specified |
| | Lairson et al. 2014 (8) | Phone calls from nurse navigators about colonoscopy screenings
Set in primary care clinics in Delaware | Mailings about screenings | $1958 per colonoscopy screening | Provider |
| | Schuster et al. 2015 (9) | Group and one-on-one support to promote breast and cervical cancer screenings among Korean American women.
Set in Baltimore / Washington D.C. | Limited information about screenings | $236 per screening | Health care system |
| Return on investment | Campbell et al. 2015 (10) | Home visits delivered by community health workers for children with asthma.
Set in Seattle | Limited information and resources about asthma | Return on investment was 1.90 | Payer |
| | Whitley et al. 2006 (11) | Outreach by community health workers for uninsured and underinsured individuals with broad health needs.
Set in a primary health care system in Denver | (none) | Return on investment was 2.28 | Not specified |
| Cost utility analysis | Brown et al. 2012 (12) | One-on-one and group support delivered by community health workers for low-income Hispanic adults with diabetes
Set along the Mexico border in Texas | Hypothetical control group | $33,319 per QALY gained across all participants
$10,995 per QALY gained for adults with high glycemic levels (>9%)
$24,500 per QALY gained for adults with diabetes (rather than adults at risk for developing diabetes) | Societal |
| | Brownson et al. 2009 (13) | Self-management support delivered by promotores for individuals with diabetes
Set in real-world community primary care settings | Usual care | $39,563 per QALY gained (from a health system’s perspective) | Health system |
| | Eddy et al. 2005 (14) | Support for diabetes prevention delivered by health coaches
Set across the US among adults at high risk for developing diabetes | Hypothetical control group not receiving any prevention | $143.00 per QALY gained (payer perspective)
$62,600 per QALY gained (societal perspective)
$24,500 per QALY gained for adults with diabetes (rather than adults at risk for developing diabetes) | Payer and societal |
<table>
<thead>
<tr>
<th>Type of economic analysis</th>
<th>Author, year, and reference</th>
<th>Intervention and setting</th>
<th>Control group description</th>
<th>Economic indicator(s)</th>
<th>Perspective</th>
</tr>
</thead>
</table>
| | Gilmer et al. 2007 (15) | • Case management and group support delivered by promotores for low-income adults with diabetes
• Set in San Diego | Usual care | • $10,141 for individuals without insurance
• $69,587 per QALY gained for individuals with commercial insurance | Third party payer |
| | Herman et al. 2005 (16) | • Support for diabetes prevention delivered by health coaches
• Set across the US among adults at high risk for developing diabetes | Placebo medication | • $1100 per QALY gained (payer’s perspective)
• $8800 per QALY gained (societal perspective) | Payer and societal |
| | Ladabaum et al. 2015 (17) | • Ongoing patient navigation to promote colonoscopy screenings
• Set in New York City | Hypothetical control group not receiving any navigation | • $9,800 per QALY gained | Payer |
| | Prezio et al 2014 (18) | • Education and self-management support delivered by community health workers for uninsured Mexican American adults with diabetes.
• Set in an urban community clinic in Texas | Waitlisted control group | • $355 per QALY gained | Health system |
| | Ryabov et al. 2014 (19) | • Self-management support delivered by community health workers for Mexican American adults with diabetes
• Set along the US-Mexico border | Hypothetical control group with similar demographic characteristics | • $13,810 per QALY gained | Health system |
| | Shih et al. 2016 (20) | • Patient navigation for Medicare beneficiaries diagnosed with lung cancer
• Set in four sites across the US | Usual care | • $19,312 per QALY gained | Not specified |
| | Wilson et al. 2015 (21) | • Patient navigation for colorectal screening among Hispanic men
• Set in San Antonio, Texas | Hypothetical control group with similar demographic characteristics | • $3,765 per QALY gained | Not specified |
| Other economic analysis | Fedder et al. 2003 (23) | • Home visits and telephone support for Medicaid patients with diabetes
• Delivered in Baltimore | (none) | One year after the intervention, health care costs declined by $2,245 for the average patient | Not applicable |
| | Jonk et al. 2015 (24) | • Telephone health coaching for high-risk insurance plan enrollees
• Set in the US | No intervention | The intervention reduced outpatient costs on average by $286 per month
The intervention reduced total costs on average by $412 per month | Not applicable |
| | Margellos-Anast et al. 2012 (25) | • Home visits for African American children with asthma
• Set in disadvantaged Chicago neighborhoods | (none) | For each dollar spent, the intervention saved $5.58 in health care costs | Not applicable |
| | Mirambeau et al. 2013 (26) | • Community health worker program for individuals with various health needs
• Set in a small, rural hospital in Vermont | (none) | The total estimated program cost was $420,348 | Not applicable |
Table 2. Other Upper Income Studies

<table>
<thead>
<tr>
<th>Type of economic analysis</th>
<th>Author, year, and reference</th>
<th>Intervention and setting</th>
<th>Control group description</th>
<th>Economic indicator(s)</th>
<th>Perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost utility analysis</td>
<td>Dukhovny et al. 2013 (27)</td>
<td>Peer support for prevention of postpartum depression among high risk women
Set in 7 health regions in Ontario, Canada</td>
<td>Usual care</td>
<td>$10,009 per case of postpartum depression averted.</td>
<td>Societal</td>
</tr>
<tr>
<td></td>
<td>Simpson et al. 2014 (28)</td>
<td>Peer support to improve hope and quality of life for individuals discharged from the hospital
Set in four mental health wards in the UK</td>
<td>Community health services</td>
<td>£12,55 per improvement change in Becks Hopelessness scale</td>
<td>Not specified</td>
</tr>
<tr>
<td></td>
<td>Petrou et al. 2006 (29)</td>
<td>Counseling to reduce postpartum depression among high risk women
Set in the UK</td>
<td>Usual care</td>
<td>£43 per month of postnatal depression avoided</td>
<td>Public sector (health and social care)</td>
</tr>
<tr>
<td></td>
<td>Irvine et al. 2011(30)</td>
<td>Counseling to reduce postpartum depression among high risk women
Set in the UK</td>
<td>Usual care</td>
<td>£67,184 per QALY gained
£20,620 per QALY gained for individuals with impaired fasting glucose</td>
<td>UK NHS and personal social services</td>
</tr>
<tr>
<td>Other economic analysis</td>
<td>Johannson et al. 2016 (31)</td>
<td>Group based support for individuals with diabetes
Set in Austria</td>
<td>Usual care</td>
<td>Estimated yearly savings would be €1660.60 per patient</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Table 3. Low and Middle Income Studies

<table>
<thead>
<tr>
<th>Type of economic analysis</th>
<th>Author, year, and reference</th>
<th>Intervention and setting</th>
<th>Control group description</th>
<th>Economic indicator(s)</th>
<th>Perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost utility analysis</td>
<td>Gaziano et al. 2014 (32)</td>
<td>Home visits by community health workers to increase hypertension adherence
Set in South Africa</td>
<td>Usual care</td>
<td>$320 per DALY averted</td>
<td>Not specified</td>
</tr>
<tr>
<td></td>
<td>Mash et al. 2015 (33)</td>
<td>Group education delivered by health promoters for adults with diabetes
Set in South Africa</td>
<td>Usual care</td>
<td>$1862 per QALY gained</td>
<td>Societal</td>
</tr>
<tr>
<td></td>
<td>Puett et al. (34)</td>
<td>Management of severe acute malnutrition by community health workers
Set in Bangladesh</td>
<td>Usual care</td>
<td>$26 per DALY averted</td>
<td>Societal</td>
</tr>
<tr>
<td>Other economic analysis</td>
<td>Bowser et al. 2015 (35)</td>
<td>National community health worker program for individuals with diverse health needs
Set in Mozambique</td>
<td>(none)</td>
<td>Adding salaries for CHWs increased cost effectiveness of their services</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>DePue et al. 2014 (36)</td>
<td>Nurse / community health workers support for adults with diabetes
Set in America Samoa</td>
<td>Usual care</td>
<td>The estimated cost of the intervention was $656 per person</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Gaziano et al. 2015 (37)</td>
<td>Screening of cardiovascular disease by community health workers
Set in South Africa, Mexico, and Guatemala</td>
<td>Usual care</td>
<td>Having community health workers use mobile screening tools increased the cost effectiveness of their services (compared to using paper screening tools)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
Appendix

Methods
I used the search terms defined below to look for articles examining any type of economic analysis and peer support in the past 5 years. I then reviewed the abstracts of selected articles and decided whether they should be included or not. For included articles, I synthesized key findings in text and table format. Finally, I reviewed the Peers for Progress white paper “Economic Analysis in Peer Support” and included additional articles. I started the search on June 26, 2017.

Search terms

References

